Fasit Mattenøtt TU 34 - 2004

Det var lurt gjort av Per. Han har nemlig regnet ut at den som velger terning sist, har størst sjanse for å vinne, hvis han velger riktig.



Vi kaller terningene for A, B, C og angir hvilke øyne hver av dem har:

A: 4,4,4,4,4,4 B: 1,1,5,5,5,5 og C: 2,2,2,2,6,6



Sjansen for B over A: 4 * 6 gunstige av 36 mulige, dvs. 2/3

Sjansen for A over C: 6 * 4 gunstige av 36 mulige, dvs. 2/3

Sjansen for C over B: 4 * 2 + 2 * 6, dvs 20 gunstige av 36 mulige, dvs. 5/9



Så hvis Pål velger A, velger Per B. Hvis Pål velger B, velger Per C. Hvis Pål velger C, velger Per A. I alle tilfelle har Per mer enn 50% sjanse for å kaste høyest.